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The diffusion constant determining the rate of the variation in the stoichiometric composition of 
CdTe for a change in cadmium pressure is measured for indium doped crystals. The results for 
doped as well as undoped crystals are expressed in terms of previously determined equiconcentra- 
tion tracer diffusion constants using a detailed point defect model. Factors responsible for asym- 
metrical behavior are discussed. 

Die Diffusionskonstante welche die Geschwindigkeit der Variation der Zusammensetzung von 
CdTe bei Anderung der Kadmium druck bestimmt wurde gemessen ftir CdTe dotiert mit Indium. 
Die Resultate fiir dotierte und undotierte Kristallen werden interpretiert auf dem Grunde eines 
detaillierten Fehlstellen-modelles. Magliche Ursachen eines asymmetrischen Verhaltens werden 
diskutiert. 

1. Introduction 

If CdTe crystals are heated in an atmosphere 
with a well-defined cadmium pressure, in 
equilibrium a certain stoichiometric ratio is 
established which depends uniquely on cad- 
mium pressure, temperature and-if applic- 
able-doping concentration. Variation of the 
cadmium pressure leads to a variation of this 
ratio. The change involves diffusion of at 
least one of the components of the crystal. 
This type of chemical diffusion can be studied 
by measuring as a function of time any 
property dependent on stoichiometry. For 
CdTe such studies have been made by Zanio 
(I) and Rud and Sanin (2) using conductivity 
as the property monitored. 

For undoped CdTe, &, could be rep- 
resented by 

d = 4exp(-1.15 eV/kT) cm2 set-l (1) 

Whelan and Shaw (3) reported for 700°C 
d = 2 x 10m4 cm2 set-l, a value that is 

* This work was supported by the Defense Advanced 
Research Project Agency under Contract No. F 1962% 
72-C-0275, Project No. 2055. 

-40x larger than indicated by (1). Rud et al. 
(2) found a smaller activation energy of 0.6 eV 
and a 900°C value of b of 2 x 10d5 cm2 see-’ 
for copper-doped CdTe in which the con- 
ductivity (r cc pf$i3. A similar study for CdS 
was carried out by Kumar and Kroger (4). 

The migration of components involves the 
migration of point defects. For CdTe, just 
as for CdS, there are various complications: 

(1) There are several mobile defects; the 
change in composition will be brought about 
mainly by the species with the largest mobility 
concentration product (SD). 

(2) S,,, if charged, migrates by ambipolar 
diffusion. 

(3) The migrating species will in general 
be present in a concentration different from 
that of other, less mobile species, S,. If the 
latter are present in larger concentrations and 
thus represent the greater fraction of the 
deviation from stoichiometry, secondary 
defect reactions transforming the mobile 
species S, into the less mobile, major defect 
species Ss (for in-diffusion) or vice versa (for 
out-diffusion) will markedly affect the rate of 
chemical diffusion. 
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Kumar et al. (4) assumed the secondary 
reactions to be fast relative to the diffusion 
proper, so that defect equilibrium remains 
maintained at all penetration depths. They 
were able to relate on this basis the chemical 
diffusion in CdS to tracer diffusion constants. 
Recently Shaw (5) pointed out that the model 
used in this paper, with [Vc] > [Cd;‘] as 
deduced fromD & = [Cd;] DCdr > [Cd;‘] DC,;‘, 
is not necessarily correct. From the latter 
inequality we can only deduce that Dcdi/D,,,. 
> [Cd;‘]/[CdI]. Thus if D,-,; B D,,;., we may 
still have [Cd;‘] > [Cd,]. Shaw further showed 
that the known D;e = DTe[VTe..] is not fast 
enough to maintain local equilibrium during 
chemical diffusion if the V,, are generated at 
dislocations present in a reasonable concen- 
tration. However, local equilibrium may 
possibly be maintained by generation or 
annihilation of vacancies by the breaking up 
or growth of dislocation loops or vacancy 
clusters. 

Zanio (I) and Rud et al. (2) reported the 
relaxation times of composition changes to be 
dependent on the direction of the changes, 
relaxation times found with increasing&r+) 
being smaller than those found with decreasing 
P,-~(T-‘). Normally ratios r-/z+ were in the 
range 1-l .5. In indium doped CdTe the ratio 
increased with increasing doping concentra- 
tion, the largest values occurring if during the 
pressure change, the pressure passed the 
cadmium pressure where the incorporation 
mechanism of indium changes from one 
governed by [IncJ % [e’] to [Inc,] = [A:] + 

2[A,“], A, indicating the native acceptors V,, 
and Tel. Values of z-/z+ as large as 12 have 
been observed. 

In some cases Rud et al. (2) observed a 
two-step relaxation consisting of an initial 
relaxation characterized by rl- followed after 
a certain time by a second relaxation charac- 
terized by z2-. The ratio’s z&- are in the 
same range as reported for r-/z+. The occur- 
rence of a second relaxation after a certain 
time suggests that nucleation is involved. This 
nucleation must be related to the secondary 
defect reactions referred to above. The way 
in which the secondary process affects the 
overall relaxation time z is complicated by the 
fact that the final state reached after a pressure 
change is to a certain extent dependent on the 
rate of the secondary processes. Later in this 
paper we give an analysis of the relaxation 
process for the case that the secondary 
processes are governed by a relaxation time 
r,. The results are as follows. 

For rr = co complete equilibrium is not 
reached; one observes an exponential ielaxa- 
tion due to the primary reaction only, the 
conductivity changing comparatively little 
(Fig. 1, o0 --f o;, curve cl, 2 = rcl). 

For z, = 0, equilibrium between the primary 
and secondary processes is maintained 
throughout. Now the relative conductivity 
change is larger (Fig. 1, co --f a,). The overall 
relaxation process is again exponential with 
a z > zcl (Fig. 1, r,). 

For 0 < rt, < co the relaxation curve contains 
a factor 1 + kexp(-t/z,) in the exponent and 

FIG. 1. Conductivity relaxation curves and the corresponding relaxation times, showing the effect of a secondary 
defect reaction with relaxation time tr. Curve b contains the factor (1 + 2exp-r/r,) in the exponent. 
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is no longer exponential (Fig. 1, curve b). All formally characterize the curve pair cl, c2 by 
curves for z, finite have crm as the asymptotic the relaxation time z,~, but this clearly makes 
value. little sense. 

As long as we can recognize this asymptote, 
z, defined as the time in which IJ has changed 
from co to CJ~ - (a0 - @J/e, even when the 
curve is not exponential, increases with 
increasing z, (Fig. 2, z, + z,~ + zb). When z 
gets large, however, the curves flatten out and 
it is no longer possible to recognize the true 
asymptotic value. The tendency exists to 
under-estimate the expected conductivity 
reduction; this tends to decrease the experi- 
mentally determined r to a false r, zf (Fig. 2). 
With increase of zr, zf decreases and 
approaches r,i, the z for r, = to. A curve with 
r, = J can arise for two reasons. In the first 
place it may be that indeed the secondary 
process is extremely slow. It is also possible, 
however, that it occurs as a result of impaired 
nucleation of secondary products (e.g., 
vacancy clusters or dislocation loops). Once 
nucleation occurs, a second relaxation, charac- 
terized by the appropriate finite z,, sets in and 
the measured z will have some value on the 
TV - rb line of Fig. 2. Figure 1 shows such a 
two step relaxation in the curves cl, ~2, 
nucleation occurring at point x. One could 

The largest T’S are to be expected for curves 
of type b with medium z,. For such medium 
z,, a difference between 7,‘s at increasing and 
decreasing pCd (r+, and r-,) will lead to a 
difference between z+ and r- as observed. 

In this paper we report on some further 
experiments in this area. A derivation of the 
ambipolar diffusion coefficient will be given 
for both pure and indium doped CdTe, and 
the relaxation effects are discussed on the 
basis of a previously established defect model 
(0 

2. Experimental 

2.1. Relaxation Experiments on CdTe-2.7 x 
IO” In crne3 

Relaxation experiments in which the elec- 
trical conductivity of a sample was measured 
after step-wise positive and negative variations 
of pCd were carried out on a sample of CdTe 
doped with 2.7 x 10” In crne3 at 645” and 
700°C with pCd at the high pc,-side of the 
CdTe stability range. The rectangular sample 
with dimensions 0.6 x 3 x 7 mm was cut from 
the same plate used earlier in tracer diffusion 
measurements (1). A four-probe method, 
with the probes arranged in a straight line, 
was used to measure conductivity. A constant 
current of 1 mA was applied through the 
current contacts at the end of the sample. The 
measured variable was the voltage across the 
central probes which were 3 mm apart. The 
experimental arrangement was similar to that 
used by Kumar et al. (4) in which the crystal 
and excess Cd are present in an evacuated 
quartz tube placed in a two-temperature 
furnace, with the crystal at the high, the Cd 
at the low-temperature end. In order to reduce 
the heat capacity of the cadmium reservoir, 
electrical leads were made to enter the tube 
at the high-temperature end. The cadmium 
pressure was varied by changing the tempera- 
ture of the Cd reservoir, keeping the crystal 
temperature unchanged. This was done by 
changing the position of the tube relative to 
the furnace. 

FIG. 2. r as f(z,) as obtained from curves such as 
shown in Fig. 1. 
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The measured change of voltage is propor- in Fig. 3. For negative Aped the relaxation 
tional to the resistivity p of the crystal which times are slightly longer; atp,, of the boundary 
in turn is related to the change in the con- between the ranges [In] = [e’] and [In] = 
ductivity B by xr ML’I, 

PO P-Pm a-am e-z-. 
P PO-P~ aO-am 

(2) 

The subscripts 0 and to refer to the initial and 
final values. For a flat sample with thickness 
d, the chemical diffusion coefficient 4 is 
related to the relaxation time z and the 
conductivity change Aa by (8) : 

Aa a-a, -=-= 
Aa0 aO-am 

exp (-t/r) with z = --$e 

(3) 

The apparatus was designed to keep the 
response time of the temperature change of the 
cold end of the tube after a change in position 
to less than 30 seconds. The width of the 
temperature range in which experiments can 
be done is limited. Below 640°C the conduc- 
tivity variations become too slow as a result 
of the decrease of 6. Above 750°C we lose 
accuracy due to the increase in D which brings 
z close to the relaxation time of the pressure 
change. 

2.2. Experimental Results 

For positive ApCd, all response curves had a 
purely exponential form. Values of b deduced 
from the measured z using Eq. (3) are shown 

-5, I I 1 

-77 
-3 -2 -I 0 

log P,,(AW ---+ 

FIG. 3. Experimental values of the chemical 
diffusion constant, & of CdTe-2.7 x IO” In crnmJ 
as a function of pea measured at 700°C with Aped > 0, 
and a calculated curve, assuming maintenance of the 
secondary reaction equilibrium. 

L/Z+ w  1.4 + 0.1. 

3. Theoretical 

3.1. Undoped CdTe 
As we saw in the introduction, chemical 

diffusion changing the stoichiometry of a 
compound may involve ambipolar diffusion 
and secondary reactions by which fast moving 
minority defects are transformed into slow 
moving majority defects. In undoped CdS at 
high pCd the fast moving species is Cd;, the 
majority species Vi, or Cd;’ (5), and with 
maintenance of local defect equilibrium 

b = $D,,;[Cd;]/([Cd;] + [Vs.] + [Cd;‘] 

= $D,*,/([Cd;] + [V,‘] + [Cd;‘] 

= WcXV;l + DG’I) (4) 

The numerical factor 5 accounts for the 
ambipolar character of the diffusion; the 
correlation coefficient for tracer diffusion by 
an interstitial mechanism was assumed to be 
one. 

Since D$, the Cd tracer diffusion coefficient 
is cc pg? while [Vi] and [Cd;‘] cc p$, one 
expects d a pk$. In undoped CdTe under 
similar conditions the fast moving species is 
Cd,‘, with this species probably the major 
positive species at T > 8OO”C, Vqe probably 
being the major species at T < 800°C (6). 

Secondary reactions involved in this case 
are the transfer of cadmium from an inter- 
stitial site to a lattice site, the Frenkel disorder 
reaction for Cd : 

Cd;‘+ Vi, GZ (Cd,Vc,)’ s Cd& + V& 

(5) 

w&L I being an unoccupied interstitial site 
open to Cd) and the reestablishment of 
equilibrium for Schottky disorder, upset as a 
result of reaction (5) : 

0 + V&+VGe+V,X,,,+V$,,i* (6) 

Both processes together result in the trans- 
formation of Cd;’ into V, or vice versa, the 
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reactions going to the right for ApC, > 0 to 
the left for ApC, < 0: 

Cd;’ z Cd& + Vie+ 2V&, i + VG,,,. (8) 
The Schottky reaction changes the volume of 
the crystal and therefore requires a volume 
source or sink. Note that ring diffusion which 
was found to contribute considerably to the 
tracer diffusion (7) does not contribute to the 
chemical diffusion. 

The calculation of d on the basis of the 
defect model, assuming ambipolar diffusion 
of Cd;’ and e’, and maintenance of equili- 
brium for the secondary defect reactions (5)- 
(8) proceeds along lines similar to those 
followed with CdS (3). Determining B from 
the rate of change of the conductivity as given 
by (3) and remembering that G Q the electron 
concentration c,, provided by the donors 
Cdi and VTe with 

c, = 2(+J;. + cq). (10) 
The particle current of electrons is related to 
b by 

J e = -B dcic,ldx = -2~ d(cCdi. + c”,;)/dx. 

(11) 

Ambipolar diffusion of e’ and Cdl’ is described 
by 

J, = -D, dc,/dx + c, D,(q/kT) drj/dx (12) 

JCd;. = -Dcdi.dcCd;./dx 

- CCdi. D,di.(‘q/kT) d~/dx (13) 
with 

J, = 2Jcd;.. (14) 

Here 4 is the inner electric potential, and D, 
and &it are the diffusion coefficients of e’ 
and Cd;‘. Eliminating d$/dx from (12) and 
(13) using (14), we find 

f, = 3Dcdi.([Cd~]/([Cdl’] + [V~~]))dc,/dx 

(15) 

and, comparing (15) with (11) 

d = 3D,,;.[Cd;‘]/([Cd;‘] + [V,]) 

= 3D,*dt[Cd;‘l + [&,I), (16) 

taking again the correlation coefficient for 
normal interstitial diffusion equal to one. The 
difference in the numerical constants, 3/2 in 

(4) and 3 in (16), results from the difference in 
charge of the diffusing species: Cd; in CdS, 
Cd;’ in CdTe. 

Dzd, [Cd;‘] and [VJ are all cc ph?, and 
therefore one expects dcd to be independent 
Of &d-as aCtUally observed (I). Using in 
Eq. (5) 

DEd = O.%phf exp (-2.11 eV/kT) (17) 

as reported by Chern et al. (7) and 

[Xl = !&‘I 
= 3.63 x 10-3p,L&3 exp (-0.62 eV/kT) 

(18) 

as given in Ref. (6), we find 

(&d)& = 7.89 x 1O’exp (-1.49 eV/kT). 

(19) 

Combination with (I) gives the ratio between 
the calculated and experimental values 

L _ = r = 1.97 x IO2 exp (-0.34 eV/kT) 
D em 

(20) 

with r = 2.15 at 600°C 3.4 at 700°C and 5 at 
800°C. This relatively small discrepancy can 
be removed by assuming the secondary 
processes to be not infinitely fast. The fact 
that the discrepancy is largest at the highest 
temperature may seem to argue against this: 
we expect the largest activation energy for the 
slower process-the secondary reaction-and 
therefore would expect the discrepancy to 
become less at higher temperatures. If the 
secondary reaction would be the slowest 
process because it had the larger activation 
energy, the discrepancy would become less at 
higher temperatures. It is possible, however, 
that the secondary processes are slow 
primarily due to a small entropy, the activa- 
tion energy being somewhat smaller than for 
the diffusion proper. Then the discrepancy 
would indeed increase at higher temperatures. 
Such a situation may indeed be present if the 
secondary process involves a volume source 
or sink for vacancies. It is also possible that the 
discrepancy is due to experimental errors in 
Dzd or 8. For a treatment involving a finite 
rate for the secondary process see Ref. (9). 
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3.2. CdTe-2.7 x 10” In crne3 

In indium doped crystals at medium 
cadmium pressures as used in our relaxation 
experiments, the fast moving species are 
V& and V,&, other native species present 
being Tel, Tel and Ter. The concentrations 
of the latter two are probably relatively small 
(6) and will be neglected. The local neutrality 
condition is 

[In&] = [e’] + [V&l + [Te:] + 2[V&] (21) 

and the flow neutrality condition 

J,< + Jv,,, + 2JVvCd = 0. (22) 

Writing expressions for the particle currents 
of V&, V& and e’ similar to Eqs. (12) and (13), 
eliminating d4/dx with the aid of (22), and 
comparing the expression for J, with expres- 
sion (11) defining 6, we find 

b = We) h,, DvCd + 4cvvcd &cd) 
+ (D,/,, F’ + DvCd F”) (23) 

with 

F’ = l/(1 + B’ + R), F”=F’R 9 
B’ = dc&dcv,ca 

and 
R = 2dcv,,Cd/dcV,Cd 

In order to evaluate B’ and R we must consider 
the processes by which the concentrations of 
Vi,, V& and Te; vary. 

Equilibrium between the fast moving species 
V& and V$ is maintained by the ionization 
process 

V& G V&, + e’ ; K,. (24) 

That between V& and Tei involves the 
Schottky disorder reaction 

0 --t V&,+V;e+V;ld,~+V;e,l; K; 

(254 

and the Frenkel disorder reaction for Te 

Vi, + Te; * (V,,Te$ z Te$, + V;,, I 

Wb) 

which add up to 

Te; z? Te;, + V& + 2Te; + V&,I (25) 

Fe,, and VG,~ are interstitial sites that can 
be occupied by Te and Cd, respectively. These 
reactions proceed to the right for Aped > 0, 
to the left in the opposite case. It may be 
assumed that local equilibrium for (24) is 
maintained. Then at all times 

dcv,/cd/cv,,o = dcy,,,/cvr,, + dc,&. (26) 

Reaction (25) on the other hand may be slow 
relative to the diffusion. If it is so slow that no 
transformation of V& into Tei takes place, 
there will still be transformation of V,& into 
V& + e’ or vice versa during diffusion both 
because V& and V& have different diffusion 
constants and because of the non-linear 
character of (24). Let us call the rate of forma- 
tion of V& and e’ from V,$ under such 
conditions X. Then 

dc,,,,/dt = DvtcB d2 cv.,,!dx2 + X 
dc,jdt = D, d2 c,/dx2 + X 

I * 
(27) 

dc,.,,ldt = Dvu d2 cvvcaldx2 - X 

If reaction (25) also occurs, this will lead to 
additional changes in the concentration of 
V,$, Vk, and e’ by the transformation of Tei 
into V& (reaction (25), rate Y) and of 
Tei + e’ into Vi, (combination of (25) and 
(24), rate 2). 

With (25) occurring, 

dc&dt = D,ncI d2 cvtca/dx2 + X + Y 
dc,/dt = D, d2 c,/dx2 + X - 2 
dc,.,,/dt = Dvaca d2 c,.,,/dx2 - X + Z 1 

(28) 

Substituting (27) and (28) and taking the 
difference leads to 

yICVCl =2(1/c, + l/cv&. (29) 

The amount of Te formed, -1 (Y + Z)d#, is a 
function of time. We can find an expression 
for it if we know how the reaction rates 
depend on concentration. This we do not, 
since we do not know the detailed reaction 
mechanism. 

The transformation rates are proportional 
to the deviations of the concentrations of the 
various species from their equilibrium values. 
These deviations are increased by the diffusion 
process and reduced by the transformation, 
the latter always remaining smaller than the 
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former. When the diffusion proceeds, we 
expect the deviation and therewith the trans- 
formation rates to increase up to a maximum 
value close to the end of the diffusion process 
when the concentration gradients are reduced 
to zero. We shall introduce these maximum 
values of Y and 2, Y,,,,, and Z,,,, and assume 
that values at shorter times are related to it by 

with 
Y=f YIna,, z =“fz,ax, 

f = 1 - exp(+,). 

Here t, is the relaxation time of the trans- 
formation reactions. This approximation will 
be valid for most of the diffusion process, 
becoming invalid only close to the end of the 
diffusion which is not reached in our diffusion 
experiments. 

Assuming dcTe cc c,, and dc,,, oc cvr,,, we 
can write at the point where Y and Z approach 
the values Y,,,,, and Z,,,,,, 

= 4 Ym,, + &,,,,)l(&,, d2 cvcdIdx2 

+ x+ Ymax). (31) 

From (29) and (31) one gets 

Z max = YInax ceiwa + cv,J (32) 

Y m.ix = -K’(DV,Cdd2 c,s,,/dx” 

+ X)/{K’ + 1 -I- c,/K + CVCdN (33) 

leading to 

Differentiation of the local neutrality con- 
dition (21) gives 

dc,, = 0 = dc, + d+, + dc,n,, + 2dc,.,,. 

(35) 

Combination of (21) (26), (34) and (35) gives 

R = 2dcv.,,/dcv,c, = 

2{c, - +,,&l + K’)Hl + Gm7 + CV’,,)) 
+ 2K’ c,{ 1 + c,,,,l(K, + cVfCd)} exp -tiz, 

(K, + 2~V~,JU + 4wa 
+ +,,) + K’ ew k-W> 

(36) 

with K’ = cTePi/cvSca. Equation (23) together 
with (34) and (36) gives the expression for d 
in terms of D,,,, and Dv;,, r,, equilibrium 
constants and the concentrations of various 
species. 

For [In] = 2.7 x 1Ol7 cmm3 and T= 7OO”C, 
[In] z 5K, while K’ w 1 the expressions for 
F’ and F” holding at various pcd are as shown 
in Table I. Figure 3 shows experimental values 
of d for CdTe-2.7 x 1Ol7 cmm3 In asf(pcd) 
at 645 and 700°C and values for 700°C 
calculated from (23) with the F’s from Table I. 
There is excellent agreement if we take r, = 0. 
A ratio d+/d- = z-/z+ slightly larger than one 
at medium pcd is explained by (23) with 
z,, < r,-. As seen in Table I, at high pCd, 
F’ and F” depend in the same way on 7,. At 
lowpcd, F’ and F”show adifferent dependence, 
but the terms in which they appear are negli- 
gibly small. Only at mediumpSd does the ratio 
r,+/r,- # 1 noticeably affect D. At T= 750°C 
and K’ > 1, b, = 1.5& is explained with 
z,- M r and z,+ = r/10 or r,&,+ = 10. In order 

TABLE I 

APPROXIMATE FORMS OF EQUATION (23) 

Low Pa Medium pCd High PCI 

Major native defect: 

F’: 

F”: 

[v&l = 5KS [V&l = [e’] = K. [e’] = 5K. 

30 + K’exp(-~/~A~ 
lt + exp (-r/t,) 6 + exp C--~/T,) 
2 +3exp(-r,r) 

72 + 5 exp (--t/7,) 

5 
-1 + exp (-r/r:) lO(6 + exp (-r/t,)) 

2 + 3 exp (--t/r,) 72 + Sexp (---t/r,) 
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to avoid the uncertainties in the definition of 
z for nonexponential curves discussed in the 
introduction, we have to construct the entire 
relaxation curve, taking 2 to be equal to the 
time at which CT = (a0 - a,)/e. 
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